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Deep learning 2D and 3D optical
sectioning microscopy using
cross-modality Pix2Pix GAN image
translation: supplemental document

This document contains supplemental methods and results.

1. SUPPLEMENTAL METHODS

A. Custom structured illumination microscopy system
Fig. S1 contains a schematic of the custom structured illumination microscopy system used in
this work.

B. Evaluation metrics
We chose mean square error (MSE), structural similarity index measurement (SSIM), mutual in-
formation (MI), and peak signal-to-noise ratio (PSNR) to quantitatively evaluate the performance
of the models between different modalities. The mean square error (MSE) measures the average
squared difference between the two images, defined as
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1
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∑
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C

∑
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(X(i, j)− Y(i, j))2 (S1)

where X and Y denote two images, and R and C denote the row and column of the image,
respectively. Structural similarity index (SSIM) measures the similarity between two images
based on the degradation of structural information [1].

SSIM(X, Y) =
(2µXµY + c1)(2σXY + c2)

(µX2 + µY
2 + c1)(σX2 + σY

2 + c2)

c1 = (k1L)2, c2 = (k2L)2
(S2)

where also X and Y denote two images, µ represents the average of the image, σ represents
the variance of the image, σXY represents the covariance of X and Y, L is the dynamic range
of the pixel values (typically 2NumberBitsPerPixel − 1), k1 = 0.01 and k2 = 0.03 by default. The
range of SSIM is [0,1], where a higher index means higher similarity between X and Y. Mutual
information calculates the mutual dependence between the two images, and can be thought of as
the uncertainty reduction about one image given the knowledge of another. Higher MI indicates
a large reduction in uncertainty, whereas lower MI indicates a small reduction in uncertainty, and
zero MI indicates the two images are independent [2]. MI is given by the equation,

MI(X, Y) = ∑
x,y

PXY(x, y)log
PXY(x, y)

PX(x)PY(y)
(S3)

where PXY(x, y) denotes the joint distribution of X and Y images, PX(x) and PY(y) denotes the
marginal distributions of X and Y images, respectively. The PSNR also defined via the MSE,
which computes the ratio between the maximum possible pixel value of a image, and the power
of the ’corrupted’ noise, a higher PSNR refers to a higher similarity between X and Y. It defines by
the equation,

PSNR(X, Y) = 10 log10
(MAXX)

2

MSE(X, Y)
(S4)

where MAXX denotes the maximum possible pixel value of image X. In that case PSNR is
expressed as logarithmic quantity with decibel scale.



Fig. S1. Schematic of the custom structured illumination system used in this work. SLM: Spa-
tial light modulator. OL: objective lens. DBS: Dichroic beam splitter. PBS: Polarizing beam split-
ter. L1, L2: tube lenses. F1, F2: excitation and emission filters. LDI: laser illumination engine.
BE: beam expander. CL: collimating lens.
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Fig. S2. Model parameters of Generator(U-Net) used in the work.
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Fig. S3. Model parameters of Discriminator used in the work.
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Fig. S4. The use of overlapping patches can enable seamless stitching of predicted images into
artifact-free mosaic images. Left: stitched GAN predicted image without overlapping; Right:
stitched GAN predicted image with overlapping

C. Model architecture details
Fig. S2 and Fig. S3 shows the detailed parameters of the Generator and Discriminator of the
GAN model used in this work. For the CNN model which is constructed by the U-Net only, we
preserved the same parameters as Fig. S2.

D. 2D Mosaicking
For many practical applications of optical sectioning microscopy, it is useful to take multiple
adjacent images and to stitch them together into a larger mosaic to overcome computational
or memory limitations. The most obvious approach is to divide the input images into small,
non-overlapping patches. Smaller images will decrease the complexity of the model, as well as
the number of parameters. However, computing each image independently and then naively
assembling them back together results in obvious artifacts at the boundaries between patches.
Fig. S4 illustrates a 2048*2048 image that was generated from four 1024*1024 input patches. The
cross-patch artifacts are highlighted in yellow arrows. We therefore designed a pipeline to ensure
that overall mosaic image quality will be preserved when using smaller patches, shown in Fig. S5.
First, we split the wide-field input image into small patches of any size (1024*1024 for this instance)
with 50% overlapping. For example, for each 1024*1024 patch (center white dashed square), we
also retrieved the four 1024*1024 neighbor patches with 50% overlapping (red, blue, green, yellow
dashed squares). Second, each patch was passed through the previously-trained GAN model to
obtain the corresponding predicted image. In this example, all five patches went through the
well-trained model, to get the corresponding predicted patches. Third, we stitched the patches
back together by selecting the relative center region of each patch. For this particular example, we
preserved center of white square [256:768,256:768], center right of red square [256:1024,512:768],
center bottom of blue square [512:768,1:768], center left of green square [1:768,256:512], center top
of yellow square [256:512,256:1024], then stitched the five small patches back according to the
original coordinates.

The right of Fig. S4 shows the result performed with the overlapping procedure. Compared
with the left image without the overlapping, we do not see obvious lines dividing the images,
and the edge effects are removed. In this way, not only are the edge effects removed for mosaic
reconstruction, but the sub-patching procedure of the pipeline enables reconstruction of any large
scale mosaic image even with non-optimal hardware.

2. SUPPLEMENTAL RESULTS

A. Application to images from different sample types
To test the universality of the approach to different sample types, we applied the model trained on
images of the surface of the prostate (prostatectomy specimen) to images collected from prostate

5



Fig. S5. Overlapping patch and stitching pipeline to reduce edge effects in final mosaic images.
Edge colored rectangles are consistent through the pipeline.

Fig. S6. Application of the CNN and GAN models to a prostate needle-core biopsy (prostate
parenchyma) using a different fluorescent stain. From left to right: wide-field input images
(WIDE, A, E, I), SIM ground truth images (SIM, B, E, J), , CNN predicted images (CNN, C, G,
K), and GAN predicted images (GAN, D, H, L).
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biopsies, which are collected from inside the prostate, not the surface. Even though both types of
samples are from prostate, it is known that the microarchitecture of the surface of the prostate is
very different from the internal prostate parenchyma. In addition, these samples were stained with
a different fluorescent stain (eosin vs. acridine orange), which stain the tissue microarchitecture
differently. Our results in Fig. S6 show that even when applied to test images that are different
from the training images in terms of tissue structure and contrast mechanism, the GAN model is
qualitatively superior to the CNN model in terms of optical sectioning performance, compared to
the ground truth SIM images. However, these results were less accurate than for the case where
the model is used to predict images from the similar type (tissue and stain technique) present
in the training set. This confirms a limitation of supervised deep learning models using paired
training datasets, which however could potentially be alleviated by training the model with
images from a wide variety of tissue types and staining protocols.
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